Measurement of Λ_b Branching Ratios # in Modes Containing a Λ_c **University of Pennsylvania** **Johns Hopkins University** Yi Le, Bruce Barnett, # Why are the Λ_b branching fractions interesting? - Little is known about the properties of b-baryons. - \triangleright Measurement of Λ_{h} branching fractions provides a way to test Heavy Quark Theory. - Currently the b-baryons are only produced at the Tevatron. Tevatron luminosity increase + Silicon Vertex Trigger = large $\Lambda_{ m b}$ sample ## Why measure the ratio of branching fractions? - We measure the ratios of branching fractions in kinematically similar decay modes. - Same triggers are used both for the signal and normalization modes. Systematic errors from the acceptance, trigger and reconstruction efficiency cancel. ### What ratios do we measure? $$f_{\text{baryon}} \times \text{BR}(\Lambda_b \to \Lambda_c^+ \pi^-) / f_d \times \text{BR}(B^0 \to D^- \pi^+) \quad \text{and} \quad \text{BR}(\Lambda_b \to \Lambda_c^+ \mu^- \nu) / \text{BR}(\Lambda_b \to \Lambda_c^+ \pi^-)$$ Both data are collected from the two-track trigger. Two-track trigger: a trigger that requires a pair of opposite-charged tracks with 120 μ m \leq impact parameters \leq 1 mm, transverse momentum ≥ 2 GeV/c, scalar sum of the transverse momenta ≥ 5.5 GeV/c, $2 \leq$ angle between two tracks ≤ 90 degrees, the 2-D distance between the beam spot and the intersection point of two tracks \geq 200 μm . How do we measure the branching fraction? $\Rightarrow \sigma_b X f_{u.d.s.barvon} X BR X \epsilon = N_{signal}$ What do we know about Λ_b decays? [a] Not a pure measurement. See note at head of Λ_b^0 Decay Modes. : b-quark production cross section >f_{u,d,s,baryon}: probability for the b-quark to hadronize to B_{u,d,s, baryon} : total reconstruction efficiency : measured event yield - fractions if combined with other analysis - \triangleright large uncertainty from BR($\Lambda_c \to pK\pi$) # Normalization Mode The data are fitted with a signal Gaussian, a satellite Gaussian and a broad Gaussian (background). $\chi^2/N=0.92$ # Signal Mode Figure 1: Reconstructed $B^0 \to D^-\pi^+$, $D^- \to K^+\pi^-\pi^-$. Figure 2: Reconstructed $\Lambda_b \to \Lambda_c\pi^-\Lambda_c \to pK\pi$. The data are fitted with a Gaussian (signal). The background shape is obtained from the Monte Carlo. $\chi^2/N=167/116$ There are two sources of backgrounds: 1. combinatorial 2. reflections. See below ## Sources of reflections in $\Lambda_b \to \Lambda_c \pi$ - Four-prong B meson decays and all the other B meson decays - $ightharpoonup \Lambda_b \to \Lambda_c K$ and other Λ_b decays - \triangleright Normalized the reflections with the measured $\mathsf{B}^0 \to \mathsf{D}^-\pi^+$ yield in the Λ_h mass window, production fractions and relative BR of four-prong to other B decays Table 1: Efficiency Ratio #### Efficiency ratio $\varepsilon(\Lambda_b)/\varepsilon(B^0)$ Systematic uncertainties | | $ \epsilon_{B^0 o D^-\pi^+}/\epsilon_{\Lambda_b o \Lambda_c^-\pi^+} $ | |----------------------|---| | $\epsilon_{Trigger}$ | 1.30 ± 0.01 | | ϵ_{Reco} | 0.96 ± 0.01 | | ϵ_{Ana} | 0.96 ± 0.01 | | ϵ_{Tot} | 1.20 ± 0.02 | #### Table 2: Summary of Systematics | | central value | variation | (%) change | |--|---------------|-----------|------------| | B^0 lifetime (μ m) | 462 | 457-467 | ±0 | | Λ_b lifetime (μ m) | 369 | 345-393 | +4
-5 | | Λ_c Dalitz structure | non-resonant | | +1 | | $MC P_T$ spectrum | | | +1 | | Λ_b polarization | 0 | ±1 | ±7 | | XFT | 2 miss | 1 miss | +3 | | ϕ efficiency | | | +3 | | subtotal | | | ±9 | | Fit model (B^0) | | | ±6 | | Fit model (Λ_b) | | | ±8 | | $BR(\Lambda_c^+ \to pK^-\pi^+)$ | | | ±27 | | $\overline{BR(D^- \to K^+\pi^-\pi^-)}$ | | | ±27 | # We measure $$\frac{f_{\text{baryon}} \times BR(\Lambda_b \to \Lambda_c^+ \pi^-)}{f_d \times BR(B^0 \to D^- \pi^+)} = 0.66 \pm 0.11 \text{(stat)} \pm 0.09 \text{(syst)} \pm 0.18 \text{(BR)}$$ # BR($\Lambda_b \rightarrow \Lambda_c^+ \ \mu^- v$) BR($\Lambda_b \rightarrow \Lambda_c^+ \pi^-$) - There are backgrounds from the feed-down of excited charm, other Bhadrons and fake muons. A slightly different formula: $R_{BR} = R_{\epsilon} \times (R_{vield} - R_{physics} - R_{fakeu})$ - $ilde{}$ We choose one control sample: $\mathsf{B}^0 o\mathsf{D}^\star\pi$ and $\mathsf{B}^0 o\mathsf{D}^\star\mu u$ to understand the backgrounds and systematic uncertainties. #### Normalization Mode **Figure 3**: Reconstructed $B^0 \rightarrow D^*\pi$, Data are fitted with a single Gaussian (signal) and a exponential background. $\chi^2/N=29.26/22$ ### Signal Mode Figure 4: Reconstructed $B^0 \rightarrow D^* \mu \nu$, Data are fitted with double Gaussian (signal) and a constant background. $\chi^2/N=21.11/31$ #### Physics backgrounds from the feed-down of excited D mesons Physics backgrounds are estimated from predicted branching ratios and the efficiencies from the Monte Carlo. Backgrounds contributing < 1% are not included. 1 **2** 3 85% | 112040 | 222 (70) | |--|------------| | $B^0 o D^{*-}\mu^+\nu$ | 5.53±0.23 | | $B^+ ightarrow \overline{D_1^0} \mu^+ \nu$ | 0.56±0.16 | | $\hookrightarrow D^{*-}\pi^{+}$ | 66.67±? | | $B^+ ightarrow \overline{D_1^{0\prime}} \mu^+ u$ | 0.37±? | | $\hookrightarrow D^{*-}\pi^{+}$ | 66.67±? | | $B^+ \rightarrow D^{*-}\pi^+\mu^+\nu$ | 0.20±? | | $B^0 o D^{*-} au^+ u$ | 1.60±? | | $\hookrightarrow \mu^+ \nu$ | 17.37±0.06 | | $B^0 o D_1^- \mu^+ \nu$ | 0.56±? | | $\hookrightarrow D^{*-}\pi^0$ | 33.33±? | | $B^0 ightarrow D_1^{-\prime} \mu^+ u$ | 0.37±? | | $\hookrightarrow D^{*-}\pi^0$ | 33.33±? | | $B^0 \to D^{*-} \pi^0 \mu^+ \nu$ | 0.100±? | | | | ### Fake muons from the B hadronic decays Backgrounds from fake muons are estimated by weighting the K/π Pt spectra from $B_{mix} \rightarrow D^*X_{hadron}$ Monte Carlo by the measured muon fake rate. See Figure 5. Systematic Note: The systematic error from the unmeasured BR is calculated by assigning 5% uncertainty to the charm decays and 100% uncertainty to the B decays. Table 4. Summer CDF Internal Systematics: $\sigma_{R_{BR}}$ ± 0.22 Fake μ Rate $P_T(B^0)$ Spectrum uncertainties Total External Systematics from Measured BR: $\sigma_{R_{BR}}$ $B_d \rightarrow D^{*-}\pi^+$ $B^+ \to \overline{D^0_1} \mu^+ \nu$ $B_{mix} \rightarrow D^{*-}X$ ± 0.17 ± 0.03 ± 0.46 External Systematics from Unmeasured BR: $\sigma_{R_{BR}}$ ± 1.09 Table 4: Summary of Systematics #### Result agrees with 2003 PDG within 0.4σ . \Rightarrow proceed with Λ_b analysis #### We measure $\frac{\text{BR}(\text{B}^0 \to \text{D}^{*-}\mu^+ \text{v})}{\text{BR}(\text{B}^0 \to \text{B}^{*-}\mu^+ \text{v})} = 22.9 \pm 7.1 \text{(stat)}_{-0.8}^{+1.3} \text{(internal sys.)} \pm 0.5 \text{(measured BR)} \pm 1.1 \text{(unmeasured BR)}$